Artikel Review : Pengaruh Proses Pengolahan terhadap Sifat Fungsional Pati
##plugins.themes.academic_pro.article.main##
Abstract
Umbi-umbian merupakan komoditi dalam negeri yang mengandung karbohidrat. Komoditi ini ternyata dapat digunakan sebagai bahan pangan fungsional yang sebelumnya hanya digunakan sebagai sumber energi saja. Hal ini terjadi karena kurangnya informasi mengenai sifat fungsional yang dapat dimanfaatkan dari umbi ini. Artikel ini dibuat dengan tujuan sebagai informasi bahwa umbi ini selain sebagai sumber energi juga dapat memberi manfaat bagi kesehatan. Metode dari penelitian ini berdasarkan studi literatur dari jurnal maupun literatur ilmiah lainnya. Dari penelusuran literatur ternyata sifat fungsional tidak hanya berasal dari umbi saja namun dengan pengolahan juga dapat mempertahankan bahkan meningkatkan nilai fungsional ini. Senyawa fungsional yang terdapat dalam umbi-umbian berupa senyawa bioaktif. Beberapa senyawa bioaktif yang terdapat dalam umbi-umbian diantaranya saponin, protein bioaktif, senyawa fenolik, glikoalkaloid, asam fitat, karotenoid, dan asam askorbat. Kandungan ini umumnya banyak terdapat pada umbi-umbian yeng belum dibudidayakan secara khusus oleh masyarakat diantaranya discorea, colocasia ataupun maranta. Beberapa proses pengolahan yang dapat dilakukan untuk meningkatkan sifat fungsional pada umbi-umbian khususnya pati adalah pati resisten, modifikasi dan Microwave Assisted Extract (MAE). Sifat fungsional yang terdapat dalam umbi selain terkandung dalam umbi juga dapat berasal dari proses pengolahan yang dilakukan dalam umbi-umbian ini.
##plugins.themes.academic_pro.article.details##
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Camel, V. (2000). Microwave-Assisted Solvent Extraction of Environmental Samples. TrAC Trends Analytical Chemical, 19, 229–248. https://doi.org/10.1016/S0165-9936(99)00185-5
Chandrasekara. (2019). Chapter roots and tubers as functional foods. Bioactive Molecules in Food. Editors Merillon, J. M., Ramawat, K. G. Spinger. 1441-1469.
Chandrasekara, A & Kumar, T. J. (2016). Roots and tuber crops as functional foods: A Review on Phytochemical Constituents and Their Potential Health Benefits. International Journal of Food Science, 2016, 1-15. https://doi.org/10.1155/2016/3631647
Chen, S., Qin, L., Chen, T., Yu, Q., Chen, Y., Xiao, W., Ji, X., & Xie, J. (2022). Review. Modification of starch by polysaccharides in pasting, rheology, texture and in vitro digestion: A review. International Journal of Biological Macromolecules, 207, 81-89. https://doi.org/10.1016/j.ijbiomac.2022.02.170
Chen, H. L., Wang, C. H., Chang, C. T & Wang, T. C. (2003). Effects of Taiwanese yam Dioscorea japonica Thunb var. pseudojaponica Yamamoto) on upper gut function and lipid metabolism in Balb/c mice. Nutrition, 19(7-8), 646–651. https://doi.org/10.1016/s0899-9007(03)00058-3
Dale, M. F. B., Griffiths, D. W., Bain, H., & Todd, D. (1993). Glycoalkaloid increase in Solarium tuberosum on exposure to light. Annals of Applied Biology, 123(2), 411–418. https://doi.org/10.1111/j.1744-7348.1993.tb04103.x
Din, Z., Xiong, H., & Fei, P. (2015). Physical and chemical modification of starches - A Review. Food Science and Nutrition, 57(12), 2691-2705 http://dx.doi.org/10.1080/10408398.2015.1087379
FAO. (1999). Production Year Book. Food and Agriculture Organization. Rome. Italy. 53.
Faridah, D. N., Fardiaz, D., Andarwulan, N. & Sunarti, T. C. (2014). Karakteristik
sifat fisikokimia pati garut (Maranta arundinaceae). Agritech,
34(1), 14-21. https://doi.org/10.22146/agritech.9517
Firdiyani, F., Agustini, T. W., & Ma’ruf. W. F. (2015). Ekstraksi senyawa bioaktif sebagai antioksidan alami Spirulina platensis segar dengan pelarut yang berbeda. Jurnal Pengolahan Hasil Perikanan Indonesia, 18(1), 28-37. https://doi.org/10.17844/jphpi.2015.18.1.28.
Hale, A. L., Reddivari, L., Nzaramba, M. N., Bamberg, J. B., & Miller, J. C. J. (2008). Interspecific variability for antioxidant activity and phenolic content among Solanum species. American Journal of Potato Research, 85(5), 332–341. https://doi.org/10.1007/s12230-008-9035-1
Hatmi, R. U., & Djaafaar, T. F. (2014). Keberagaman Umbi-umbian sebagai Bahan Pangan Fungsional. Prosiding Seminar Hasil Penelitian Tanaman Aneka Kacang dan Umbi. Balai Pengkajian Teknologi Pertanian. Yogyakarta. pp 950-960.
Herlina, & Lindriati, T. (2014). Produksi polisakarida larut air dari biji buah durian (Durio zibenthinus Murr) dan aplikasinya untuk pangan fungsional sebagai hipolidemik. Respitory Universitas Jember. https://repository.unej.ac.id/bitstream/handle/123456789/63247/herlina_stranas_10.pdf?sequence=1&isAllowed=y
Hou, W. C., Lee, M. H., Chen, H. J., Liang, W. L., Han, C. H., Liu, Y. W., & Lin, Y. H. (2001). Antioxidant activities of dioscorin, the storage protein of yam (Dioscorea batatas Decne) tuber. Journal of Agricultural and Food Chemistry, 49(10), 4956–4960. https://doi.org/10.1021/jf010606m
Hou, W. C., Chen, H. J., & Lin, Y. H. (2000). Dioscorins from different Dioscorea species all exhibit both carbonic anhydrase and trypsin inhibitor activities. Botanical Bulletin of Academia Sinica, 41(3), 191–196. https://www.researchgate.net/publication/244478565_Dioscorins_from_different_Dioscorea_species_all_exhibit_both_carbonic_anhydrase_and_trypsin_inhibitor_activities
Hou, W. C., Chen, H. J., & Lin, Y. H. (1999). Dioscorins, the major tuber storage proteins of yam (Dioscorea batatas Decne), with dehydroascorbate reductase and monodehydroascorbate reductase activities. Plant Science, 149(2), 151–156. https://doi.org/10.1016/S0168-9452(99)00152-1
Hsu, F. L., Lin, Y. H., Lee, M. H., Lin, C. L., & Hou, W. C. (2002). Both dioscorin, the tuber storage protein of yam (Dioscorea alata cv. Tainong No. 1), and its peptic hydrolysates exhibited angiotensin converting enzyme inhibitory activities. Journal of Agricultural and Food Chemistry, 50(21), 6109–6113. https://doi.org/10.1021/jf0203287
Jayakody, L., & Hoover, R. (2002). The effect of lintnerization on cereal starch granules. Food Research International, 35(7), 665–680. https://doi.org/10.1016/S0963-9969(01)00204-6
Karaki, N., Aljawish, A., Humeau, C., Muniglia, L., & Jasniewski, J. (2016). Enzymatic modification of polysaccharides: Mechanisms, properties, and potential applications: A review. Enzyme and Microbial Technology, 90, 1–18. https://doi.org/10.1016/j.enzmictec.2016.04.004
Kingston, H. M., & Haswell, S. J. (1997). Microwave-enhanced chemistry; American Chemical Society Washington, DC.
Kiss, A. S., Milotay, P, Kerek, M. M, Markus, M. T., & Kiss, J. (2005). Differences in anthocyanin and carotenoid content of fruits and vegetables. Food Research Internasional, 38, 1023-1029. https://doi.org/10.1016/j.foodres.2005.03.014
Li, Y. D., Xu, T. C., Xiao, J. X., Zong, A. Z., Qiu, B., Jia, M., ..., & Liu, W. (2018). Efficacy of potato resistant starch prepared by microwave-toughening treatment. Carbohydrate Polymers, 192, 299–307. https://doi.org/10.1016/j.carbpol.2018.03.076
Liompart, M., Jares.C. G., Celeiro, M., & Dagnac, T. (2018). Microwave Asisted Excraction. Encyclopedia of Analytical Science. 67-77. https://doi.org/10.1016/B978-0-12-409547-2.14442-7
Lockyer, S., & Nugent, A. P. (2017). Health effects of resistant starch. Nutrition bulletin, 42(1), 10–41. https://doi.org/10.1111/nbu.12244
Mandal, S. C., Mandal, V., & Das, A. K. (2015). Classification of extraction methods. Essentials of Botanical Extraction – Principles and Applications. Academic Press. Cambridge USA. 83–136. https://doi.org/10.1016/b978-0-12-802325-9.00006-9
Mao, Y., Li, Y., & Yao, N. (2007). Simultaneous determination of salidroside and tyrosol in extracts of Rhodiola L. by microwave assisted extraction and high-performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 45(3), 510–515, https://doi.org/10.1016/j.jpba.2007.05.031
Maran, J. P., & Prakash, K. A. (2015). Process variables influence on microwave assisted extraction of pectin from waste Carcia papaya L. Peel. International Journal of Biological Macromolecules, 73, 202–206, https://doi.org/10.1016/j.ijbiomac.2014.11.008
Mutlu, S., Kahraman, K., & ̈Oztürk, S. (2017). Optimization of resistant starch formation from high amylose corn starch by microwave irradiation treatments and characterization of starch preparations. International Journal of Biological Macromolecules, 95, 635–642. https://doi.org/10.1016/j.ijbiomac.2016.11.097
Naczk, M., & Shahidi, F. (2006). Phenolics in cereals, fruits and vegetables: occurrence, extraction and analysis. Journal of Pharmaceutical and Biomedical Analysis, 41(5), 1523-1542, http://dx.doi.org/10.1016/j.jpba.2006.04.002
Narwojsz, A., Borowska, E. J., Sliwinska, M. P., & Oziewicz, M. D. (2020). Effect of different methods of thermal treatment on starch and bioactive compounds of potato. Plant Foods for Human Nutrition, 75, 298-304. https://doi.org/10.1007%2Fs11130-020-00808-0
Navarre, D. A., Goyer, A., & Shakya, R. (2009). Nutritional value of potatoes; vitamin, phyto-nutrient and mineral content, In Advances in Potatoes Chemistry and Technology, J. Singh and L. Kaur, Eds., Elsevier, Amsterdam, The Netherlands.
Nulty, H. M., & Pentieva, K. (2004). Folate bioavailability. Proceedings of the Nutrition Society, 63(4), 529–536. https://doi.org/10.1079/PNS2004383
Oyeyinka, S. A., Umaru, E., Olatunde, S. J., & Joseph, J. K. (2019). Effect of short microwave heating time in the physicochemical and functional properties of Bambara groundnut starch. Food Bioscience, 28, 36–41. https://doi.org/10.1016/j.fbio.2019.01.005
Padhan, B., Biswas, M., & Panda, D. (2020). Nutritional, Anti-Nutritional and Physico Functional Properties of Wild Edible Yam (Dioscorea spp.) Tubers from Koraput, India. Food Bioscience, 34. https://doi.org/10.1016/j.fbio.2020.100527
Park, S. H., Na, Y., Kim, J., Dal Kang, S., & Park, K. H. (2018). Properties and applications of starch modifying enzymes for use in the baking industry. Food science and biotechnology, 27(2), 299-312. https://doi.org/10.1007%2Fs10068-017-0261-5
Paré, J. R. J., Bélanger, J. M. R., & Stafford, S. S. (1994). Microwave-Assisted Process (MAP™): A New Tool for the Analytical Laboratory. TrAC, Trends Analytical Chemistry, 13, 176–184. https://doi.org/10.1016/S0167-9244(97)80019-4
Pavlić, B., Teslić, N., Vidaković, A., Vidović, S., Velićanski, A., Versari, A., ..., & Zeković, Z. (2017). Sage processing from by-product to high quality powder: I. Bioactive potential, Industrial Crops and Product, 107, 81–89. https://doi.org/10.1016/j.indcrop.2017.05.031.
Prakash, G., Hosetti, B. B., & Dhananjaya, B. L. (2014). Antimutagenic Effect of Dioscorea pentaphylla on Genotoxic Effect Induced by Methyl Methanesulfonate in The Drosophila Wing Spot Test. Toxicol International, 21(3), 258-263. https://dx.doi.org/10.4103%2F0971-6580.155341
Punia, S. (2020). Barley starch modifications: Physical, chemical and enzymatic – a review. International Journal of Biological Macromolecules, 144, 578–585. https://doi.org/10.1016/j.ijbiomac.2019.12.088
Purnomo, Daryono, B. S., Ruqayah & Sumardi, I. (2012). Studi Etnobotani Dioscorea spp. (Dioscoreaceae) dan Kearifan Budaya Lokal Masyarakat di Sekitar Hutan Wonosadi Gunung Kidul Yogyakarta. Jurnal Natur, 14(3), 191-198 http://dx.doi.org/10.31258/jnat.14.3.191-198
Rombaut, N., Tixier, A. S., Bily, A., & Chemat, F. (2014). Green extraction processes of natural products as tools for biorefinery. Biofuels, Bioproducts and Biorefining, 8(4), 530-544. https://doi.org/10.1002/bbb.1486
Roos, N. M. D. (2004). The potential and limits of functional foods in preventing cardiovascular disease. In: Functional foods, cardiovascular disease and diabetes. Arnold, A. (Ed). CRC Press. Boca Raton. Pp. 1‐9
Rudianto, B., & Widarawati, R. (2013). Upaya peningkatan kandungan pati
umbi garut dengan perlakuan bokhasi dan pengolahan tanah. Agros,
15(1), 44-51. https://123dok.com/document/yjown2kz-peningkatan-kandungan-perlakuan-pengolahan-increasing-arrowroot-processing-treatment.html#google_vignette
Sajilata, M. G., Singhal, R. S., & Kulkarni, P. R. (2006). Resistant starch a review. Comprehensive Reviews in Food Science and Food Safety, 5(1), 117. http://doi.org/fnkkfw
Setyowati, N. (2012). Perbanyakan garut (Maranta arundinacea L.) dari bibit
cabutan sisa panen dengan aplikasi berbagai pupuk kandang.
Jurnal Ilmiah Pangan, 21(4), 389-396, https://doi.org/10.33964/jp.v21i4.206
Shen, L., Li, J., & Li, Y. (2022). Review article: Resistant starch formation in rice: genetic regulation and beyond. Plant communications, 3(3). https://doi.org/10.1016/j.xplc.2022.100329
Shewry, P. R. (2003). Tuber storage proteins. Annals of Botany, 91(7), 755–769. https://doi.org/10.1093/aob/mcg084
Sun, Y., Liao, X., Wang, Z., Hu, X., & Chen, F. (2007). Optimization of microwave-assisted extraction of anthocyanins in red raspberries and identification of anthocyanin of extracts using high-performance liquid chromatography–mass spectrometry. Eur. Food Research. Technology, 225, 511–523. https://doi.org/10.1007/s00217-006- 0447-1.
Virtanen, T., Autio, K., Suortti, T., & Poutanen, K. (1993). Heat-induced changes in native and acid-modiWed oat starch pastes. Journal of Cereal Science, 17(2), 137–145. https://doi.org/10.1006/jcrs.1993.1014
Volkert, B., Lehmann, A., Greco, T., & Nejad, M. H. (2010). A comparison of different synthesis routes for starch acetate and the resulting mechanical properties. Carbohydrate Polymer, 79, 571-577. https://doi.org/10.1016/j.carbpol.2009.09.005
Wang, Z., Mhaske, P., Farahnaky, A., Kasapis, S., & Majzoobi, M. (2022). Cassava starch: Chemical modification and its impact on functional properties and digestibility, a review. Food Hydrocolloids, 129. https://doi.org/10.1016/j.foodhyd.2022.107542
Wang, M., Sun, M., Zhang, Y., Chen, Y., Wu, Y., & Ouyang, J. (2019). Effect of microwave irradiation-retrogradation treatment on the digestive and physicochemical properties of starches with different crystallinity. Food Chemistry, 298. https://doi.org/10.1016/j.foodchem.2019.125015
Wang, L., & Wang, Y. J. (2001). Structures and physicochemical properties of acid-thinned corn, potato, and rice starches. Starch/Starke, 53(11), 570–576. https://doi.org/10.1002/1521-379X(200111)53:11%3C570::AID-STAR570%3E3.0.CO;2-S
Wen, J. J., Li, M. Z., Hu, J. L., Tan, H. Z., & Nie, S. P. (2022). Resistant starches and microbiota. Food Chemistry, 387. https://doi.org/10.1016/j.foodchem.2022.132895
Xie, Y., Yan, M., Yuan, S., Sun, S., & Huo, Q. (2013). Effect of microwave treatment on the physicochemical properties of potato starch granules. Chemistry Central Journal, 7(113), 1–7. https://doi.org/10.1186/1752-153X-7-113
Yang, Z., & Zhai, W. (2010). Optimization of microwave-assisted extraction of anthocyanins from purple corn (Zea mays L.) cob and identification with HPLC-MS. Innovative Food Science Emerging Technologies, 11(3), 470–476, https://doi.org/10.1016/j.ifset.2010.03.003.
Yeh, K. W., Chen, J. C., Lin, M. I., Chen, Y. M. & Lin, C. Y. (1997). Functional activity of sporamin from sweet potato (Ipomoea batatas Lam.): A tuber storage protein with trypsin inhibitory activity. Plant Molecular Biology, 33(3), 565–570. https://doi.org/10.1023/a:1005764702510
Zailani, M. A., Kamilah, H., Husaini, A., Seruji, A. Z. R. A., & Sarbini, S. R. (2022). Functional and digestibility properties of sago (Metroxylon sagu) starch modified by microwave heat treatment. Food Hydrocolloids, 122, 107042. https://doi.org/10.1016/j.foodhyd.2021.107042
Zaragoza, E. F., Navarrete, M. J. R., Zapata E, S., & Alvarez, J. A. P. (2010). Resistantstarch as functional ingredient: A review. Food Research International, 43(4), 931942. http://doi.org/fgpc2w
Zeković, Z., Pintać, D., Majkić, T., Vidović, S., Dukić, N., M., Teslić, N., …, & Pavlić, B. (2017). Utilization of sage by-products as raw material for antioxidants recovery –ultrasound versus microwave-assisted extraction, Industrial Crops Products, 99, 49–59, https://doi.org/10.1016/j.indcrop.2017.01.028.